Globally Consistent Distributed Snapshots with Retroscope

Taking a consistent snapshot of a distributed system is no trivial task for the reasons of asynchrony between the nodes in the system. As the state of each machine changes in response to incoming external messages or internal events, each node may produce a log of such state changes. With the log abstraction, the problem of taking a snapshot transforms into the issue of aligning the logs together and finding a consistent cut among all these logs. However, time asynchrony between the servers makes collating all the system logs difficult using just physical clocks available at each machine, because clocks tend to drift, producing some time asynchrony or time uncertainty. Various time synchronization protocols, such as NTP and PTP, exist, but perfect synchronization is still unattainable.

Retroscope is the system we designed to take unplanned, non-blocking, consistent global snapshots. Unlike other systems, Retroscope does not need to block while taking snapshot, as it does not need to wait out time uncertainty caused by the clock skews at various machines thanks to the reliance on Hybrid Logical Clocks (HLC) instead of NTP-synchronized (NTP) time.

Figure 1
Using NTP time fails to take consistent snapshot without waiting out the time uncertainty

 

HLC introduces causality information into the clock as messages are being exchanged between servers and provides the same causal guarantees as Lamport’s Logical Clocks (LC). More information about HLC can be found here and here.

Taking a snapshot

Retroscope achieves snapshots by adding HLC into the network communication of the Retroscoped system. Internally, Retroscope keeps a sliding window-log of past state changes along with the associated HLC timestamps at each node. This window-logs are used to facilitate the unplanned nature of taking snapshots. Snapshots are triggered by a special client that maintains the common HLC with the rest of the system. Retroscope allows for instant unplanned snapshot to be started by the initiator, such instant snapshots are guaranteed to capture the states at the time Tnow of snapshot request being issued by the initiator. Obviously, once the snapshot request message reaches the nodes, the time has advanced to Tr > Tnow.

Upon receiving the snapshot request message at Tr, each node starts taking a local snapshot. Since the system does not halt processing requests, depending on the implementation, we may arrive to a local snapshot at some time Tf >= Tr. Because our local snapshot is at the state that happened after the requested time, we need to modify it to arrive to the state at time Tnow. We use the window-log of state changes to undo all operations that happened locally after Tnow, thus arriving to a desired local snapshot. Once all nodes compute local snapshots, Retroscope is done taking a global consistent snapshot at time Tnow.

fig2
Instant Snapshot is being taken. (1) Initiator sends the message to take a snapshot at Tnow, (2) Process n receives the message and start taking a local snapshot (3) All operations performed after Tnow are undone from the local snapshot.

Retroscope provides more flexibility in taking unplanned snapshots. Taking instant snapshot (i.e. snapshot initiated at Tnow) requires each node to maintain only a small log of recent changes. We can, however, expand the instant snapshots and offer retrospective snapshot flexibility at the expense of growing state change log larger. With retrospective snapshots, we can offer the ability to look at the state that has already happened in the past. This functionality is handy for application debugging when there is a need to investigate the root cause of the problem after it has already happened. A distributed reset is another application that can benefit from the retrospective snapshots, as the system can be reset into a correct state after the state has been corrupted.

We have Retroscoped Voldemort key-value database to take data-snapshots. Retroscoping Voldemort took less than a 1000 lines of code for adding HLC to the network protocol, recording changes in the Retroscope window-log, and performing snapshot on Voldemort’s storage. We did the experiments on the 10-node Voldemort cluster with databases of various sizes. We have learned that keeping the window-log of state changes has very little impact on the throughput and latency when no snapshots are being taken, as seen in figure below.

Figure 3
Impact of Retroscope on normal system operation.

Performing snapshot is non-blocking in Retroscope, because there is no need to wait out the time uncertainty. The non-blocking nature allows Voldemort to continue processing both read and write requests while the snapshot is being computed. The figure below shows throughput and latency for every second of execution while taking the snapshot on a 10,000,000 items database (each item is 100 bytes). Overall we have observed an 18% throughput and 25% latency degradation over the snapshot time, however these numbers can be improved by using a separate disk system for snapshot.

Figure 4
Impact of Retroscope while taking a snapshot

What can be done with Retroscope?

We used Retroscope to take snapshots of data on a key-value store, however the utility of snapshots can be very extensive. With powerful snapshot capabilities, such as retrospective snapshot, we can look into the past of our distributed system and search for anomalies. Retrospective snapshots can be used to restore system to the latest correct state after the state corruption. Finding such correct states is also possible with Retroscope; we can use it to take successive snapshots to check for global invariants; it can be powerful in monitoring various application level predicates. Retroscope can perform other monitoring tasks. Unlike other monitoring systems that tend to look at local state independently or isolate monitoring to a request level, Retroscope can look at global parameters of the system across every node in a consistent way. We can even use Retroscope to detect erroneous patterns in message exchange by observing what messages are sent and received and how they impact the state at each node as we go through time.