
Adapting to Access Locality via Live Data
Migration in Globally Distributed Datastores

Aleksey Charapko
University at Buffalo, SUNY

acharapk@buffalo.edu

Ailidani Ailijiang
Microsoft

aiailiji@microsoft.com

Murat Demirbas
University at Buffalo, SUNY

demirbas@buffalo.edu

Abstract—Storing data close to where it is used improves
the performance of cloud applications. However, data access
patterns change dynamically over time. Many datastores stat-
ically shard data making locality-adaptation difficult, and some
provide limited capability for controlling the data-placement or
migration. This leads to increased latency, reduced throughput,
and expensive operations. To address this problem, we investigate
the requirements for live data-migration and design four data-
migration polices. Our policies use heuristics to determine the
optimal data placement based on the access locality in the
workload and load-balancing constraints. We show that even
simple heuristics can be effective, and the topology-aware policies
demonstrate overall better results with up to 70% latency
improvement in medium locality workloads and nearly 95%
improvement in workloads exhibiting very strong single-region
access locality.

I. INTRODUCTION

The latency of reaching out to the data across the globe
becomes prohibitively large and detrimental to the user expe-
rience [6], [8] for social, e-commerce, and IoT applications.
Globally distributed cloud databases [10], [11], [9], [14] have
been adopted to address this problem. The de facto method
of keeping the data close to the consumers in distributed
databases is full replication [10], [14], [4], however, this often
comes at the cost of weaker consistency provided to the clients.
Moreover, fully replicated systems often have a dedicated
region to perform write operations, making updates incur much
higher latency than reads.

Other designs [9], [11] provide strong consistency at the
global scale, but must restrict the replication of data to a subset
of the available regions. Such systems often partition the data
into small chunks and replicate across a handful of regions,
with partitions possibly replicated to different and not always
overlapping subsets of all available regions. If users happen to
request the data from a partition located in the nearby regions,
then they observe a relatively small latency. On the other hand,
if users request the data located far away, they pay a heavy
penalty of up to a few hundred milliseconds just to reach over
to the regions hosting the data.

Many of today’s cloud applications need both strong con-
sistency and low latency. This combination of requirements is
hard to achieve and depends upon a careful placement of data
to reduce the access latency. In a recent study [5], Facebook
found that placing data according to access locality can shed
as much as 50% of the request latency, all while reducing
storage costs by 40% and WAN-traffic by 50%.

Despite the obvious benefits of keeping the data where it is
needed the most, many databases [10], [15], [12] offer only
static data partitioning and placement. Some solutions [11], [9]
provide limited support for data movement and do not fully
take advantage of the access locality.

Contributions. To address these problems and fill this gap,
we define the criteria that live data migration systems should
follow to benefit from access locality. We posit that effective
data-migration policies should:
• Minimize access latency,
• Preserve load balancing with regards to data storage and

processing capacity,
• Preserve collocation of related data, and
• Minimize the number of data migrations.
We design and evaluate four data-migration policies follow-

ing these requirements. Our policies work in two phases: first
they find an optimal location for some data object given its
access history and then adjust this location to adhere to the
balancing requirements. Our policies work at an arbitrary data-
granularity, such as individual data items or shards/partitions.
They preserve collocation even at the most granular level for
related objects having similarities in their access patterns.

Our simplest policy, the n-consecutive accesses policy, uses
a threshold of consecutive accesses to the object to make
the placement decision. Although simple, this policy works
well for workloads with strong locality in a single region. In
workloads that exhibit no locality or have more than one region
with high rate of access, n-consecutive policy often fails to
find the optimal placement, and sometimes it may even cause
unnecessary data movement.

The majority access policy decides on the placement by
examining the request history of the object and migrating
it to a zone with majority access. This policy has similar
drawbacks to n-consecutive one, although these drawbacks
tend to manifest themselves to a lesser extent.

The exponential moving average (EMA) policy computes
the average region for all requests to the object, therefore this
policy can potentially find better placement for objects that
have more than one high-access region. EMA policy, however,
requires the regions to have numerical IDs arranged in the
order of region’s proximity to each other. This policy falters
for deployments with complicated geography and may require
multiple migrations to move data to the best location.



Finally, our center-of-gravity (CoG) policy calculates the
optimal placement for data by taking into account the requests
distribution between the regions and the topology of the
regions. With the topology information, such as inter-region
distances measured in terms of communication delays, CoG
policy calculates the region closest to the central location for
any access locality workload.

Results. We evaluate our migration policies with compre-
hensive simulations and show how they perform under dif-
ferent static and dynamic locality conditions. Our simulations
consider a geo-distributed datastore deployed over 15 regions
following the AWS region topology, with the inter-region
latency taken from [1].

Our migration policies show a significant improvement in
access latency and reduction in WAN traffic. In some work-
loads exhibiting high access locality, the improvement can
reach as high as 70% compared to static non-migrating system.
We also show the ability of policies to adjust to changes in the
workload’s access locality, whereas non-migrating statically
partitioned solution performance varies greatly depending on
how well the access locality aligns with static data-placement.

Our experimentation revealed that different policies may
be better suitable for different workloads. For example, n-
consecutive accesses policy can adjust to changes very quickly,
and maybe a good choice for workloads with strong single
region locality that changes between regions quickly over
time. On the contrary, workloads with bad locality cause
n-consecutive access policy to behave erratically and un-
necessarily migrate the data back-and-forth. In general, the
policies aware of the region topology fare better under a broad
spectrum of conditions. For instance, CoG policy outperforms
all other policies in no-locality, high locality and split locality
workloads.

II. RELATED WORK

Volley [2] is an offline data-migration recommendation
system. It relies on processing all access logs for an object
offline before making a migration recommendation that must
be carried out by some other system or engineers. Volley’s
offline processing is cumbersome and time-consuming, taking
as much as 14 hours to sift through 1 month worth of
logs. Additionally, Volley focuses on data-collocation and load
balancing more than on the optimal placement due to access-
locality. Similarly, associated data placement (ADP) [22] and
Clay [18] focus on collocating related data for transactional
workloads.

Akkio [5] is Facebook’s data placement system that
adapts to the changing access locality patters. It manages data
placement by grouping the related data that exhibit similar
access locality into µ-shards. Each µ-shard then can be moved
between datacenters based on up to a few days of recent access
history. Akkio mainly focuses on the granularity of data mi-
gration, the storage requirements for all the access history and
integration into the existing databases at Facebook, leaving the
questions of determining the optimal data-placement largely
unexplored.

GPlacer [23] solves the problem of optimal data placement
in the context of the transnational workloads. The proto-
col is topology aware and considers both distances between
datacenters and between a client and prospective replicas.
GPlacer computes optimal locations for database deployment
given some workload, whereas our policies assume running
database capable of migrating data between datacenters. Our
policies are more suitable for live migration at arbitrary data
granularity in response to changes in access locality, since
such migration decisions often need to be made quickly,
rely on limited data and consider only migration of affected
data objects. Additionally, some of our migration policies use
simpler topology-unaware heuristics.

Distributed storage overlays [20] explore a problem of
efficiently migrating the data to prevent the downtime, data
unavailability and data-loss during the migration. Overlays
control what data and from which location is visible to the
client while the migration is in progress.

Some databases also provide means to control the location
of data. Selective replication extension to PNUTS [13] ana-
lyzes data access patterns and selectively replicates the data
to regions that will benefit from having a local copy. This
reduces the network bandwidth and storage requirements, but
offers little advantage in terms of access latency compared
to regular full replication in PNUTS. Spanner [11] uses
movedir command to migrate the data between Paxos-groups.
CockroachDB[9] can change raft-group’s leaseholder and
move it closer to the region requesting data the most. Tuba [7]
adopts to changes in the access locality and workload intensity
by dynamically reconfiguring itself at the shard/partition gran-
ularity. DPaxos [16] data-management/replication protocol
based on the WPaxos [3] algorithm targets high access locality
workloads to bring highly granular data to the consumers on
the edge.

Some systems address a bigger problem of live application
migration from one datacenter to another [19], [21]. For
instance, Supercloud [19] is a live virtual machine migration
service placed on top of existing public cloud infrastructure.
It moves VMs in response to changes in access pattern.
Supercloud can move a small VM with 1GB of RAM in under
one second: quick enough to not even cause TCP connection
to be dropped. Despite its speed, VM migration requires a
lot of bandwidth and must transfer data, such as storage and
memory prior to making a final switch.

III. LIVE MIGRATION OF DATA

Many geo-distributed cloud applications, such as social
networks [5], IoT [17] and e-commerce are sensitive to the
physical location of data. If the data is not available close
to the consumer, the penalty may be too large to tolerate.
On the global scale, misplacement of data can add as much
few hundreds of milliseconds to the access latency in some
extreme cases. For that reason, many applications rely on
replicating the data and/or caches across the globe to facilitate
the local clients to quickly read the required information.
This approach works well when strong consistency is not



necessary [5]. However, full global replication in strongly-
consistent systems is expensive, since it requires at least one
round trip to synchronize all the datacenters, making all update
operations always complete with a large WAN-scale latency.

Proper placement of data dramatically improves the access
latency in sharded, strongly-consistent systems by alleviating
a need for a full global replication and reducing the number of
far, out-of-region requests. Another benefit of locality-aware
data placement is smaller operating costs achieved through a
reduction in storage requirements and WAN traffic [5].

Unfortunately, data access locality is not static and changes
due to a variety of reasons, such as diurnal patterns [19],
people’s travel and migration, business needs, etc. Many
datastores[10], [15], [12], however, only provide static data
placement that cannot accommodate the access locality
changes. Some databases [11], [9] have limited capability to
move data, such as Spanners movedir command. In this paper
we formulate the criteria for optimal live data migration and
present a four migration policies that can be applied to a
variety of databases to improve the access locality.

A. Problem Definition

Practical live data-migration solution needs to satisfy a
number of often contradicting criteria. Most importantly, the
system needs to optimize for access latency and move the
data closer to where it is needed. This, however, may come
in contradiction with load balancing constraints, since the
migration policy also needs to respect the datacenter capacity
and refrain from moving data to overloaded regions. Live
system may also find itself in a situation with limited data
available to make migration decisions. This contrasts greatly
with offline systems [2] that may use a week’s worth of
request logs to compute the best object placement strategy. To
keep the policy on the slim side, it needs conserves resources
of the system and eliminate unnecessary movement of data
across regions. Finally, data-collocation is another constraint
to consider while making migration decisions.

For the purpose describing the object migration problem, we
assume a distributed datastore handling many different objects.
Each object represents some inseparable data that always gets
replicated, stored and migrated together. The granularity of the
objects is up to the database design, and it may be different
for different systems. For example, an object can be a partition
or shard that has to be stored or migrated as one piece.
However, such partition may also contain smaller units of data
available to the users, such as key-value pairs or documents.
Alternatively, a migration object may also be the smallest
granularity of data in the systems, such as individual key-value
pair or a document.

The database is spread out across Z different regions or dat-
acenters. For the simplicity of the model, each migration object
must belong to a single region. For databases that perform
replication across a handfull of regions, such as Spanner [11]
or CockroachDB [9], a datacenter with a leader is said to own
the migration object. For instance, a CockroachDB raft-group
leader or leaseholder provides access to the partition’s data for

both reads and writes, therefore a region hosting the leader
owns the partition, while the followers in other datacenters
ensure fault-tolerance. Some designs may replicate data across
multiple regions and not have a dedicated node for serving
reads [14], [10], in this case the owner is a region responsible
for writes.

At each region z, clients cz interact with the system and
produce some load wz on a replication object n, such that the
total load W is the sum of the loads generated in each region:

W =

Z∑
z=1

wz = 1

In other words, wz represents the proportion of a total load for
some replication group n generated in a region z and describes
the locality of the workload.

Minimizing access latency. Data migration policy must
strive to minimize the average request latency by adjusting
to the access locality. Intuitively speaking, we want the data
to be located close to where it is needed. Let Lz be the
average latency for operations originating in a region z for
some replication object n, and dz be a distance, expressed
as communication latency, between a region z and the re-
gion owning an object n. We can express region latency as
Lz = dz + ε, where ε is some overhead for processing and
replicating data in a database.

We can compute the global average latency Lavg for an
object by taking into account the workload characteristics:

Lavg =

Z∑
z=1

wzLz

The object migration policy needs to minimize the Lavg by
moving the object to an optimal location for a given workload
w and therefore adjusting distances d. In the best case, the
object is placed to a zone closest to the workload’s center of
gravity or location in the middle of object’s access distribution.

Minimizing load disbalance. Migration policy purely
driven by access latency optimization may jeopardize the
stability of the system in some situations. In case of highly
skewed workloads, the latency optimization may cause all
object to migrate to a handful of regions, causing disbalance in
the system. As a consequence, migration policy needs to halt
migration to datacenters that are already at their maximum
capacity, and resort to moving the objects to the next best
place for their locality.

Assuming the storage capacity Cz in a region z, migration
policy needs to ensure that storage requirement

∑
Storage(o)

for all objects in a zone is at or below the capacity:

∀z ∈ Regions : Cz ≥
∑
o∈Oz

Storage(o)

However, a region may be limited not only in storage, but
in the processing capacity P(t) over some time-interval t.
Similarly to storage, a migration policy should not assign more
objects to a region than it can process:

∀z ∈ Regions : P(∆t)z ≥
∑
o∈Oz

ε|Request(∆t, o)|



where Oz is a set of all objects in region z, ε is the cost of
processing a single request, and Request(∆t, o) is a set of
requests for object o over the time-interval ∆t.

Minimizing network utilization. A migration policy needs
to provide some stability to the object placement and elimi-
nate unnecessary migrations. If the policy is too sensitive it
can cause erratic object movement in response to minuscule
variation in the access patterns. These unnecessary migrations
not only cost network resources, but may also increase the
access latency. On the other side of the spectrum, a policy that
is too slow to adjust to the new workload locality, will miss
significant opportunity to reduce the latency and operating
costs by reacting too late.

Maximizing data collocation. Many application exhibit
tendency for some objects to frequently get accessed together.
For performance reasons, it is important to keep such related
data close together. If the policy disregards the collocation,
the benefits from migrating one object may be entirely offset
by out-of-region access to other related objects.

IV. POLICIES FOR LIVE DATA MIGRATION

We are solving the problem of live data migration by sepa-
rating it in two phases. First, we find the optimal placement for
the data object without considering other constraints, such as
load balancing and object collocation. Once we find the best
possible region/node for the object, we check if that location
meets the balancing criteria. In cases when optimal placement
is not possible due to the balancing reasons, we find a different
node to be as close as possible to the previously computed
optimal location. Algorithm 1 shows the high-level overview
of our generic two-phase migration policy.

Algorithm 1 Two-phase Object Migration Policy
1: Initialize:

reqo := request for object o
rcurrent := current location of o

2: adjust workload parameters wo to reflect reqo
3: Compute optimal location rnew for workload wo . Phase-1
4: if rcurrent 6= rnew then
5: if Overloaded(lnew) then
6: rnew := next closest non-overloaded node . Phase-2

return rnew

Finding the best place to move an object requires a global
knowledge on how such object is being used in the sys-
tems. Such global usage information is often available at the
node/region currently hosting the object, since that region is
responsible for answering all requests for the object. Some
database designs do no send all requests through the owner
region, for example Cosmos DB can perform read operations
without notifying the leader. These designs, however, can
either piggyback the local usage statistics to some message
that requires the owner or utilize a gossiping protocol. Con-
solidating all the usage information about the owner allows
us to make design a placement/migration policy that requires
no communication with other nodes when computing the
migration decision.

We have designed four different data migration/placement
policies that differ mainly in the algorithms for identifying

the best node/region for a data object: n-consecutive accesses,
majority access, exponential-moving average (EMA) policy
and center-of-gravity (CoG) policy.

A. n-Consecutive Accesses Policy

The most trivial policy is n-consecutive access. This policy
uses the number of consecutive requests originating in the
same region as a heuristic value for optimal placement. As a
result, the region that accesses the object n times in a sequence
receives the ownership. We provide the pseudocode for the
policy in Algorithm 2.

This policy works best in workloads that exhibit good
locality. In more sporadic workloads with no regions being
able to make n-consecutive accesses to the object policy
will not performing any migration and the object will remain
stationary at its current leader. Sporadic workloads, however,
can often create another anomaly as well: different regions
may be able to access the object n times, causing it to move
erratically between regions.

Algorithm 2 n-consecutive accesses
1: Initialize:

reqo := request for object o
rcurrent := current location of o
rmigrate := current migration candidate region

2: if rmigrate = Region(reqo) then
3: consecutive := consecutive+ 1
4: else
5: rmigrate := Region(reqo)
6: consecutive := 1
7: if consecutive >= n then
8: rcurrent = rmigrate

return rcurrent

B. Majority Access Policy

Majority access policy uses a different heuristic for finding
the best region for an object. It relies on counting all requests
coming from each region over some period of time and
migrating the object over to the region with the most requests.
Naı̈ve implementation of this policy is sensitive to the window
size over which the request statistics is accumulating. If the
window is too small, there may be too few requests coming
in to make a good placement decision. For example, if only a
single request came in during the window, that request alone
will constitute the majority of accesses and cause the policy
to relocate the object. To reduce the severity of this problem
we establish a minimal number of requests required to make
a decision in order to accumulate more reliable sage statistics.

C. Exponential Moving Average Policy

Exponential Moving Average policy (EMA) relies on com-
puting a region of average access for an object. This differs
from the above two policies in a way that we no longer tailor
the migration to one region exhibiting the most need for the
object. Instead, EMA tries to compute the “central” region for
a particular workload.

EMA works by requiring the users to assign integer IDs
in the range [1, n] for each of n regions in the system. The



Algorithm 3 Majority access
1: Initialize:

reqo := request for object o
rcurrent := current location of o
counters := list of access counts per region
tw := start time for request statistics window

2: counters[rcurrent] := counters[rcurrent] + 1
3: if tw + ∆t < T ime(reqo) and

∑
counters ≥ n then

4: rcurrent := region with greatest # of accesses
5: counters := Zeroes() . reset the counts
6: tw = T ime(reqo) . Reset the window start time

return rcurrent

3
2 4

1

Fig. 1: Exponential moving average topology; regions have
left and right neighbors

ID assignment is not arbitrary and represents the proximity
of regions to each other. We say that a region i has a left
neighbor i− 1 and a right neighbor i+ 1, as shown in Figure
1. Regions 1 and n have only one neighbor.

Region IDs are then used in calculating the region of
average access with the following EMA formula:

es = αr + (1− α)es

where es is the EMA, and α is the parameter to control how
much weight new requests have on the average. Higher α
places higher weight to the new object requests.

We also use parameter ε to prevent the migration of the
object until its average is within the ε of the new region ID.
This helps prevent unnecessary object migrations or jitter. We
present EMA policy in Algorithm 4.

Algorithm 4 EMA
1: Initialize:

reqo := request for object o
rcurrent := current location of o

2: es := α ∗RegionId(reqo) + (1− α) ∗ es . es is EMA value
3: rnext := Round(es)
4: if Abs(es − rnext) ≤ ε then
5: rcurrent := rnextreturn rcurrent

D. Center of Gravity Policy

Center-of-gravity (CoG) policy fixes the shortcoming of
the EMA policy and can be applied efficiently to any region
topology. Instead of relying on preconfigured region IDs to

0.06
0.12 0.23

0.45
0.14

90

165

145

201

25
8

365

318 128
165

289

L=122

L=131

L=270

L=154

L=214

Fig. 2: Computing CoG Weights. Australia is the owner, since
it is closest to the workload center of gravity and yields the
best latency

represent region proximity, the CoG policy uses distances
between datacenters to construct a fully-connected weighted
graph, with vertices representing the regions and edge weights
standing for the distances d between the regions.

We use the topology graph to compute the center of gravity
for a workload. A policy assigns each vertex a score wzo
representing the proportion of the workload generated at region
z for object o. Knowing all the distances and the workload
distribution across regions, policy can compute the region
that minimizes the average latency. To that order, a migration
policy calculates the latency score Lr for every region r:
Lr =

∑Z
z=1 wzodrz , where drz is the distance from region

r to region some region z. After computing the L-scores, a
policy picks the region with lowest score. We describe this
process in Algorithm 5 and visually illustrate it in Figure 2.

Algorithm 5 CoG policy
1: Initialize:

reqo := request for object o
rcurrent := current location of o
Let wzo be the workload distribution for object o
Let R be a set of all regions: R := 1..Z

2: for each r ∈ R do
3: Lr =

∑Z
z=1 wzodrz

4: rcurrent := r1 such that ∀r1, r2 ∈ R : Lr1 ≤ Lr2
5: return rcurrent

Since the CoG policy depends on knowing the workload
distribution wzo across all regions for object o, it is imperative
we compute it as accurately as possible. The simplest way to
compute this workload distribution is similar to computing
the accesses in the majority-access policy. We can establish
a time interval over which to count requests from different
regions and use that data to get the proportions of access at
each region. As with the majority-access policy, we need to
ensure some minimum number of requests are available to
make an accurate computation.

Another approach is to continuously estimate the workload
ratio for each region. We can adjust each regions’ workload
weights after every request. The region from which a request
is received improves its weight score, while all other regions’



cumulative score degrades by the same amount.

V. EVALUATION

We evaluate our migration policies with comprehensive
simulations and show how they perform under different static
and dynamic locality conditions. First we study individual
object placement policies and how their parameters affect
the performance. Then, we conduct a comparison study to
compare different migration strategies with each other. In
the first two sets of experiments we do not use balancing
component to see which policy can yield the best object
placement without any other constraints. Finally, in the last
set of experiments we test the load-balancing component and
illustrate how it impact the latency in certain workloads.

For our simulations we consider a geo-distributed datastore
deployed over 15 regions following the AWS region topology,
with the inter-region latency taken from [1]. We simulate
clients across regions that make requests to a single object at a
time. We estimate the latency of the request as the round-trip-
time (RTT) between the client’s region and the region owning
the object. Additionally, we assume that migration between
regions to take one inter-region RTT, and if some requests
comes it before the migration has completed, this request is
penalized by the time required to finish the migration. For the
purpose of simulation we ignore the costs of replication, as
these are database dependent and beyond the control of the
migration policy.

We used a few distinct workloads to simulate the different
access locality patterns: locality, changing locality, no locality
and split ownership. We used a pool of N migration objects
with each object having a unique id in a range [0, N).

In locality workload, the probability of selecting an object at
every region is governed by a Normal distribution N (N

Z z, σ)
over a ring of integers modulo N called ZN , where Z is
number of regions and z is a region id in a range [0, Z).
For our typical setup with 15 regions and 3000 objects, this
translates to N (200z, σ). Using normal distribution to drive
object access allows every region to use all objects, but puts
a higher probability of accessing objects with ids close to the
region’s mean. We further subdivide the locality workload into
two: medium locality and high locality. The workloads differ
only in their standard deviation σ, with high locality workload
having σ = 50 and medium locality workload σ = 100. Larger
σ means that every region is more likely to access objects
further from its mean and reach out to the objects in access
locality of neighboring zones.

Our changing locality workload is similar to the locality
one, except the mean of each normal distribution slowly
changes over time to mimic diurnal workload variation. This
makes a region more likely to access different objects as time
progresses and requires the policies to adapt in real time.
No locality workload makes each object to have an equal
probability of being selected by a client from any region.
Finally, the split ownership workload assigns every object to
up to k distinct regions, with an object having an equal chance
of being requested at any of its assigned regions.
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Fig. 4: Majority access policy with different parameters under
the locality workloads

A. Tuning Migration Policy Parameters

First we conduct a series of simulations on each of the
individual policies to evaluate how various policy parameters
impact the performance. We conduct these experiments with
our locality workloads on 3000 objects initially placed in
random regions.
n-consecutive accesses policy uses consecutive requests

coming from a region as the heuristic for optimal object
placement. This policy is quick to react for low value of n, but
this also makes it possible for objects to continuously move
between regions if access is bursty at each region. Figure 3
shows the policy with different values of n in two locality
workloads: medium locality and high locality. Larger values
of n perform poorly in medium locality setting due to the
inability to reach a threshold of n consecutive accesses on
many objects whose access is shared between adjacent regions.
High locality workload improves all tested values of n.

Majority accesses policy keeps tab on every region and
decides on the migration based on which region has requested
an object the most over some time period ∆t. The policy also
enforces the minimal history of n requests before it can make
a placement decision. In Figure 4 we show majority access
policy in locality workload.

The policies with higher statistics collection interval ∆t and
minimum history n shows slower adaptation to the workload
locality, however more request statistics also allows such
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workloads

policies to eventually make better placements, especially in
the medium locality workloads.

EMA policy computes the average region of the object
access. Unlike the previous two policies, EMA may require
multiple steps to migrate the object from one region to another.
This is because in most cases the policy cannot move objects
to an arbitrary region and can only migrate data to either
its left or right neighbor as the average gradually changes
in response to the workload. In EMA policy, the parameter
α controls how much weight is put to the newer requests,
with higher α causing the policy to put more weight to the
recent requests. Parameter ε controls how close to average
must get to the region ID before the migration happens.
This parameter reduces jitter, as it prevents small short-term
workload irregularities from causing the migrations of objects
with access locality split almost evenly between regions.

Figure 5 illustrates the performance of EMA policy in
medium and high locality settings. Lower values of α make
EMA perform slightly worse than higher α. This is likely
due to the fact that higher α makes the policy more eager
to migrate objects at the later stages of execution when an
average score has been well established over many requests.
Parameter ε also affects the performance by making policy
more likely to migrate borderline objects whose locality is
nearly evenly split between adjacent regions. Even though
medium locality workload shows some variation due to the
difference in parameters, high locality situation nearly erases
all the differences.

CoG policy uses the topology information to compute cen-
tral location for each object given its access patterns. Our CoG
policy comes in two flavors: window based and continuous. In
window based, the policy collects usage statistics similar to the
majority access policy, and uses the per-region access counts
to compute wz for each region z in a given time window ∆t.
Continuous CoG policy does not compute actual workload W
from the request history, and instead assigns a workload score
to each region. The score is updated with every request and
favors more recent requests to the older ones.

We illustrate the performance of CoG policy in Figure 6.
The continuous version of the policy appears eager to migrate
objects at first, since it reevaluates the placement after every
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Fig. 6: CoG policy with different parameters under the locality
workloads

request, thus making the decisions quickly. It is worth noting,
that in some cases, this quick initial decision making may not
be correct, since at start-up the policy assumes equal access
locality at each region. The window based CoG is slower
to react initially, but it eventually get to similar levels of
performance as the continuous option.

B. Policy Comparison

In this set of experiments we compare our four different
policies together under a variety of workloads simulating
various access locality patterns. We also add a never-migrate
policy to demonstrate the performance of static, non-migrating
solution. An always migrate policy moves an object to a
different region every time it is accessed from another region,
illustrating the most aggressive object migration possible. We
also measure the number of object migrations each policy
performs to estimate the impact on the cross-region network
utilization. The lower migration number indicates that the
policy is making less unnecessary movements and conserves
the network resources.

First we start with no locality workload that accesses every
object in uniform manner across all regions. The lack of
apparent locality may cause unnecessary migration in the
policies, both degrading the performance and flooding the
network with many messages. Figure 7 shows the results.
As expected, majority accesses policy performs the worst in
this experiment, since it erratically moves objects around and
incurs the migration penalty. n-consecutive accesses policy
matches the performance of never migrate baseline, since n-
consecutive with n = 3 cannot per from any migrations in this
workload. CoG and EMA policies were able to improve the
performance by moving the objects to a more central location
in the topology, allowing on average faster access from any
region. This, however, is possible only because we do not take
load balancing into consideration in this experiment, allowing
all objects to migrate to a single region.

The medium locality workload, shown in Figure 8 allows
all policies to improve the access latency. Unlike no-locality
workload, EMA shows the worst performance in this exper-
iment, barely improving over the always migrate baseline.
CoG policy showed the best performance in this experiment,
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Fig. 7: No locality workload
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Fig. 8: Medium locality workload in 15 regions

although it was tied with the majority accesses policy. This is
because the workload we used favors a single region for object
with other accessing being in the neighboring regions, making
a simple majority region heuristic very effective. n-consecutive
accesses policy trails the CoG and majority accesses since
it exhibits jittering behavior and moves the objects shared
between neighboring regions often.

The relative performance of the policies, however, may
change for different clusters. For example, Figure 9 shows
the same medium locality, but with 5 regions instead of 15.
In particular, we used inter-region latency corresponding to
California, Ireland, Japan, Australia and Brazil AWS regions.
We observed that in this topology EMA performs relatively
better compared to the always migrate approach. This is likely
because the topology and the region ID assignment is more
favorable to EMA.

In some instances, the access locality for an object may be
shared between multiple regions. When this happens with 3
or more regions, it is often possible to find another region
in the middle to host the object and optimize the latency for
all regions haring it. Figure 10 demonstrates this scenario
by having every object equally accessed between utmost 3
random regions. Non-topology aware policies, such as n-
consecutive and majority accesses do not provide as much
benefit in this scenario as CoG policy. This is because this
policies use single-region heuristic, while the access locality
is shared across many regions. Majority and n-consecutive
accesses policies still improve the latency, since they are likely
to migrate the object to at least one of the region accessing
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Fig. 9: Medium locality workload in 5 regions
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Fig. 10: Up to 3 regions share object

it, therefore reducing latency of all requests from that region.
CoG, on the other hand can optimize the placement for all 3
regions sharing the object, and such placement may not always
be in one of these 3 regions.

Surprisingly, EMA policy performed the worst in this work-
load. Even though EMA tries to compute the average region
for a workload, it is not aware of the region topology and relies
on imperfect user assignment of region IDs to estimate the
proximity between regions. We followed the order of regions
as it appears in the table from [1] to assign IDs, but this
leads to situations when regions’ neighbors are not necessarily
geographically close. In this topology, as EMA gradually
moves objects to the average region, it actually overshoots the
best region for many objects, causing the latency to degrade
after the initial improvement. It is still worth noting that EMA
performed better than purely static object placement.

Workload locality often changes overtime in response to
various environmental factors. In Figure 11 we present the
performance of our migration policies under such chang-
ing locality workload. In this experiment, we changed the
access locality relatively fast, causing the object’s locality
completely change the region in around 20 seconds of elapsed
simulated workload. Similar to static workload with single
region dominating object’s use, majority accesses and CoG
performed similarly and showed lowest latency. Under these
highly dynamic conditions, n-consecutive access policy per-
formed on par with CoG and majority accesses, due to its
ability to quickly react to the changes. This policy, however,
causes many unnecessary migrations over time. EMA policy
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Fig. 11: Drifting locality in 15 regions
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Fig. 12: Load balancing with skewed access pattern

continues to suffer from complex geography, slow migration
and overshooting the optimal regions due to bad region ID
assignments. In a separate longer running experiment we
observed this configuration of EMA to settle at the latency
of 59 milliseconds, still significantly outperforming random
partitioning with no migration.

C. Load Balancing

In this experiment we test the load balancing component
of our migration policy shown in Algorithm 1. We use the
CoG policy to determine the data placement before adjusting
the migration decision to adhere to the balancing constraints.
We used a 1000 object, 5 region setup corresponding to AWS
California, Ireland, Japan, Australia and Brazil regions. We
applied a highly skewed workload with 5 times as many
requests coming from a single region (California) than all other
regions combined.

Under these conditions, unbalanced solution is likely to
migrate most objects to a single region, optimizing for latency.
While this has a potential to provide better access latency, in
real system this it is likely to overwhelm the capacity of the
datacenter. Balanced policy, on the other hand, minimizes the
latency while staying within the allowed balancing envelope.

To illustrate this trade-off, we measure the load difference
between the most and least loaded region along with the
best possible latency. For simulation simplicity we do not
implement request balancing and only show data balancing.
The capacity of each region is limited to 1

4 of all objects.

The results of our skewed workload experiment, shown
in Figure 12, suggest that while unbalanced policy has a
potential to deliver substantially better performance due to the
access locality, it may significantly overload the system by
skewing all the work to a single region. In unbalanced CoG,
the difference between the region owning most objects and the
one with least number of objects grows fast as the policy starts
adjusting to locality. When CoG policy takes into account the
balancing constraints, it can only place so much data into
a single region before being forced to find the next closest
region with free capacity. Balanced CoG shows a relatively
modest improvement of roughly 25% compared to static object
placement, while unbalanced CoG may potentially reduce the
latency multiple-fold.

VI. CONCLUDING REMARKS

Geo-distributed cloud databases solve the problem of plac-
ing data close to the user. Strongly consistent global databases,
however, have to rely on partial replication to keep costs low
and performance high. This requires datastores to abandon
static sharding/placement of data and invent ways to strate-
gically place the data where it is needed the most.

We formulated the criteria for data-migration proto-
cols/policies to optimize for access latency, load balancing,
data-collocation, and network usage. We introduced four mi-
gration policies for latency optimization. Our data-migration
policies help reduce the latency by as much as 70% compared
to non-migration approach in workloads exhibiting some ac-
cess locality. Tuning the policy parameters with values best
fit for anticipated workloads also improves the performance.
However, some policies are hyper-sensitive to such tuning,
while others are more forgiving leading to easier maintenance.
We also demonstrate that the best policies are aware of the
region topology and are conservative to migrate the data
until sufficient usage statistics has become available. On the
other hand, simple heuristics such as n-consecutive accesses
from the same region prove to be surprisingly effective for
determining optimal data placement for workloads that show
good access locality.

More complex policies may take advantage of larger pools
of request data to learn the workload patterns and be proactive
instead of reactive. For instance, an object may migrate from
one region to another at the same time workload access
locality moves with the diurnal pattern. Our current policies
are reactive and take some time to sense the change in the
workload to perform a migration.
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