
Scalable but Wasteful: Current State of
Replication in the Cloud

Venkata Swaroop Matte
The Pennsylvania State University

Aleksey Charapko
University of New Hampshire

Abutalib Aghayev
The Pennsylvania State University

ABSTRACT
Consensus protocols are at the core of strongly consistent
replication deployed in cloud-based storage systems. There
have been many proposals to optimize these protocols, most
of which work by identifying and shifting load from bottle-
necked nodes to underutilized nodes.

We show that while these optimizations increase through-
put, they sacrifice resource efficiency, which is paramount
in a cloud setting. We propose a new metric to measure the
efficiency of these protocols and show that using this metric,
for example, the optimized EPaxos protocol is less efficient
than the unoptimized Multi-Paxos protocol. We then demon-
strate that Multi-Paxos can achieve 2× higher throughput
than EPaxos in a fixed-budget resource setting that is typical
of the cloud. Our work underlines the need for considering
resource efficiency when optimizing consensus protocols,
given that they are increasingly deployed in the cloud.

ACM Reference Format:
Venkata Swaroop Matte, Aleksey Charapko, and Abutalib Aghayev.
2021. Scalable but Wasteful: Current State of Replication in the
Cloud. In Proceedings of 13th ACMWorkshop on Hot Topics in Storage
and File Systems (HotStorage’21). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.475/1234.5678

1 INTRODUCTION
Strongly consistent replication is the backbone of mod-
ern cloud services, ranging from configuration manage-
ment [13, 29] to cloud datastores [8, 22, 26, 28, 33, 39]. To
ensure strong consistency, these services typically imple-
ment statemachine replication using consensus protocols [4],
henceforth referred to as replication protocols, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage’21, July 27-28, 2021, virtual conference
© 2021 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/1234.5678

need to scale and provide high-throughput, low-latency ser-
vices to the users. Recently, many new replication protocols
have emerged, all improving throughput, latency, or both.
These optimized replication protocols follow a similar

recipe: they identify one or more bottlenecked components
in a traditional solution and try to alleviate the bottleneck
by shifting the work elsewhere. For example, many tradi-
tional protocols [2, 17, 24, 32] rely on a dedicated leader
to prescribe the operations and their order to the follower
nodes. EPaxos [23] conjectures that a single leader is a bot-
tleneck for both the throughput and latency and removes
it by allowing any node to become an opportunistic leader;
other recent systems [9, 31] further optimize EPaxos. Pig-
Paxos [7] moves a significant portion of communication from
the leader onto the followers. Compartmentalized Paxos [35]
separates Paxos into multiple distinct roles or compartments;
many of these roles, such as batching nodes or communica-
tion relays scale horizontally, allowing them to be deployed
on separate VMs to offload the leader and improve through-
put.
Although the aforementioned and similar solutions im-

prove the throughput, they all share a common pitfall: they
increase the throughput at the cost of reducing effi-
ciency. This is because they assume dedicated clusters with
identical nodes, where one of the nodes is bottlenecked (fully
utilized) in a traditional baseline protocol while the remain-
ing nodes are underutilized. As such, the optimized protocols
try to spread the load from the bottlenecked node to the
remaining nodes with no regard for efficiency because
the resources in the underutilized nodes are idle anyway.
Such load-shifting techniques, however, may not be ideal
for sharded cloud-native services that operate in “resource-
packed” cloud environments [5, 34] where every unit of
resource costs money.

Consider an example of Multi-Paxos [32] (or Raft [24], or
a primary-backup [2]) replication scheme deployed on dedi-
cated nodes, as shown in Figure 1 (a). These protocols rely
on a single leader, and it is expected for a leader to do more
work and use more resources than the followers [1], leaving
some idle resources at the follower nodes. EPaxos, and sim-
ilar works that aim to scale consistent replication, assume
such a setting with identical nodes; they spread the load
evenly among the nodes at the expense of added complexity
and, most importantly, reduced efficiency. As such EPaxos

https://doi.org/10.475/1234.5678
https://doi.org/10.475/1234.5678

HotStorage’21, July 27-28, 2021, virtual conference V. S. Matte et al.

Figure 1: (a) A single instance of Multi-Paxos running
on three dedicated nodes each with two cores. The
Multi-Paxos leader uses both cores of a node since
it is CPU-intensive, whereas Multi-Paxos followers
use one core each. (b) Three instances of Multi-Paxos
(each instance shown in a different color) running in
a cloud environment on three 4-core nodes, where the
leader and followers are spread out over the nodes.

can take advantage of resources left unused by leader-based
replication and provide higher throughput.
Modern cloud services, however, rarely operate on ded-

icated resources; on the contrary, physical resource shar-
ing with some resource isolation is the norm. Moreover,
most systems scale horizontally by running multiple pro-
tocol instances side-by-side to support different data par-
titions [8, 26, 28, 36]. In such shared environments, the re-
sources are allocated and scheduled using some sort of task
packing [11], leaving only limited free resources on each
node.

We illustrate a hypothetical example of such task packing
in Figure 1 (b), where three instances of Multi-Paxos share
a set of 4-core servers and get packed in such a way that
the leader of one instance is co-located with the followers
from the other instances. In our example, the leader uses
two cores, while the followers use one core each. Despite
the resource usage disparity, packing multiple instances of
the protocol achieves an equal load on all physical nodes.
Additionally, such packed deployment needs fewer cores
than three dedicated Multi-Paxos instances as in Figure 1 (a).
Given the same budget of resources, however, protocols

such as EPaxos are at a disadvantage because they are less
efficient. That is because resource balancing and bottleneck
avoidance in these protocols often come at the price of
added protocol complexity and increased overall resource

usage. In this paper, we show that while throughput-
optimized protocols deliver better throughput than
their simpler counterparts when given dedicated re-
sources, these same protocolsmay significantly under-
perform in resource-shared environments. Our find-
ings show that we, as a community, have been neglecting the
efficiency aspect of scaling consensus-based replication. We
believe that efficiency, in addition to traditional performance
metrics, is essential as these protocols are increasingly being
deployed in the cloud. Indeed, in our survey, we were un-
able to find papers that propose optimized consensus-based
state machine replication protocols to also include CPU or
memory usage of the proposed optimizations.
We argue for the need for efficiency optimizations that

allow processing more operations using the same pool of
resources in addition to optimizations that take advantage
of more added resources. To that order, we propose to eval-
uate the replication algorithms under more scrutiny and
refrain from judging them only by the best or maximum
performance metrics.We suggest a new metric for inclu-
sion to typical protocol evaluations: throughput-per-
unit-of-constraining-resource-utilization. This metric
normalizes the performance of a protocol relative to the
consumption of the constraining resource.
We illustrate our metric on Multi-Paxos and EPaxos pro-

tocols and show that it serves as a good proxy for the perfor-
mance of the replication systems in sharded resource-shared
environments. This is because a more efficient system can
pack more copies of itself in the same pool of cloud resources
than a less efficient protocol, despite the more efficient sys-
tem being less capable in absolute terms when used with
dedicated resources. For instance, in our experiments, we
demonstrate that although EPaxos outperforms Multi-Paxos
by nearly 20% on a set of dedicated VMs, when we deploy
multiple instances of the protocols on a fixed set of shared
resources, Multi-Paxos provides almost twice the throughput
of EPaxos.
Our work applies the metric to CPU usage alone, but it

can also be applied to other constraining resources, such as
memory or network bandwidth. With the help of this new
metric focused on resource efficiency instead of absolute per-
formance, we hope that the community will start optimizing
replication protocols for the modern cloud infrastructure.

2 REPLICTION IN THEWILD
State machine replication protocols are deployed in many
systems and applications spanning a variety of environments.
These environments range from dedicated hardware deploy-
ments in the on-premise data centers to fully managed pub-
lic cloud solutions. Most state machines, however, gravitate
away from fully dedicated clusters even in the on-premise

Scalable but Wasteful: Current State of
Replication in the Cloud HotStorage’21, July 27-28, 2021, virtual conference

setting due to cost. When an on-premise cluster has lots of
unused hardware, it is tempting to deploy all systems in their
own isolated environments. Over time, though, this becomes
more challenging as the number of systems grows without
expanding the on-premise data center. As such, resource
sharing (Figure 1 (b)) becomes increasingly important, espe-
cially considering the multi-core nature of modern servers.
The need to deploy state machine replication protocol in
the resource shared environments also grows when consid-
ering the migration from on-premise to the public cloud.
The public cloud model further encourages resource sharing
with its pay-as-you-go cost model that charges for resources
allocated or used.
Many state-of-the-art storage systems take advantage

of resource sharing. Systems like Spanner [8], Cock-
roachDB [28], and YugabyteDB [36] all use small instances
of Multi-Paxos or Raft [24], such that each physical machine
or VM supports many replicas from different partitions. For
example, CockroachDB relies on 64MB partitions, allowing
for hundreds if not thousands of replicas on the same phys-
ical server. DocumentDB [27], now known as Azure Cos-
mos DB [22], also claims a load-balanced approach where
primary-backup [2] replicas are strategically assigned to
servers to balance the load in the federation.

3 CURRENT APPROACHES TO SCALING
STATE MACHINE REPLICATION

Given the pervasiveness of replicated state machines in dis-
tributed systems and applications, improving the replica-
tion throughput has been an important problem in the past
decade. Some solutions [9, 23] call for boosting throughput
and reducing latency at the same time, while others [7, 35]
argue for trading off some latency in exchange for better
throughput. Both camps, however, take a similar high-level
approach for improving their performance. They first iden-
tify a bottleneck in traditional systems and then work to
eliminate the bottleneck by moving it elsewhere. Usually,
the bottleneck is at the leader, as it is used to communicate
with the clients and coordinate the replication [1].

Systems like EPaxos [23, 31] and Atlas [9] avoid having
a one-node bottleneck by not having a single leader that
centers all communication around it. Instead, these systems
expand on Fast Paxos [17] ideas and try to use fast quorums
to commit/replicate operations in one round-trip network
latency from any node in the system. This approach, com-
monly known as leaderless consensus, allows any node to
become an opportunistic leader for an operation in the hopes
that the operation won’t conflict with any other concurrent
replication initiated by other nodes. When conflicts do oc-
cur, leaderless solutions fall back to a more traditional Paxos

protocol to resolve the ordering. The added benefit of op-
portunistic protocols is reduced latency, as the system may
immediately start replication and avoid routing all opera-
tions to the centralized leader.

Some solutions like SDPaxos [38], separate the replication
from operation ordering when implementing replicated state
machines. This allows the payload to be accepted and repli-
cated by every node in the system. However, a lightweight
designated leader or sequencer is still used to establish the
order among all replicated operations.
Other protocols keep a centralized leader to avoid the

complexity of determining and resolving the conflicts and
instead offload as much work from the leader as possible.
Both Compartmentalized Paxos [35] and PigPaxos [7] fall
into this category; they use some form of intermediate nodes
to handle most of the leader’s communication and processing
responsibilities, shift the bottleneck away from the leader and
onto other Paxos components. Compartmentalized Paxos goes
back to the roots of Paxos [16] protocol and implements all
the standard Paxos roles (proposers, acceptors, learners, etc.)
as stand-alone components, called compartments. It adds a
few additional roles, such as leader proxies for relaying leader
communication and batching nodes to aggregate operations
together. Such role separation coupled with the additional
roles allows serial compartments, like proposers, to run on
their own dedicated VMs, leaving themmore spare resources.
PigPaxos, on the other hand, retains the combined replica
roles popular in the practical implementations ofMulti-Paxos
and Raft, and instead delegates some followers to act as a
communication proxy on behalf of a leader. Another similar
approach, Linearizable Quorum Reads [6], shifts processing
away from Paxos components to the clients; more specifically,
it allows the clients to read directly from the quorum of
followers, bypassing the leader entirely.

The general approach of moving the processing away from
bottlenecked component allows the protocols to reach higher
throughput by utilizing the resources previously left unused
due to the bottleneck. To confirm this, we run EPaxos and
Multi-Paxos on five AWS EC2 m5a.large instances with 2
vCPUs and 8GiB of RAM. We use a 50% write workload
targeting an in-memory key-value store where items are
selected uniformly randomly. Our experiment uses up to 90
concurrent, closed-loop clients to saturate the cluster and
observe its maximum throughput. For EPaxos, we use a work-
load with up to a 10% conflict ratio. As Figure 2 (a) shows,
EPaxos outperforms Multi-Paxos by about 20%—an observa-
tion consistent with the original EPaxos evaluation [23].

Similar to EPaxos, the original evaluations of all improved
protocols focus solely on the absolute best performance that
was unlocked by avoiding the bottleneck and utilizing idle re-
sources of dedicated nodes. The systems today, however, are

HotStorage’21, July 27-28, 2021, virtual conference V. S. Matte et al.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(k

o
p

s/
s)

Time (s)

(a)

Multi-Paxos
EPaxos

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60
C

P
U

 U
ti

li
za

ti
o

n
 (

%
)

Time (s)

(b)

Replica (node1)
Replica (node2)
Replica (node3)
Replica (node4)
Replica (node5)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Time (s)

(c)

Leader (node1)
Follower (node2)
Follower (node3)
Follower (node4)
Follower (node5)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t
(o

p
s/

s/
C

P
U

%
)

Time (s)

(d)

Multi-Paxos
EPaxos

Figure 2: (a) Throughput of EPaxos and Multi-Paxos on five AWS EC2 m5a.large VMs. CPU utilization of each (b)
EPaxos and (c)Multi-Paxos node. (d) Throughput of EPaxos andMulti-Paxos per unit of aggregateCPUutilization.

increasingly deployed on the cloud, making such evaluations
inadequate for resource-shared environments.

4 EFFICIENCY METRIC
The general scalability approach taken by the new protocols
that we described earlier has a major disadvantage. The elim-
ination of the bottleneck and shifting processing elsewhere is
not free and requires more complex and nuanced algorithms
to make these systems work. As a result, while these systems
can unlock the unused resources of dedicated nodes, they do
so at the expense of using more resources.
We confirm this by measuring the CPU usage of EPaxos

from the previous experiment. As Figure 2 (b) shows, all
nodes running EPaxos replicas are fully utilized. (Since all
nodes in EPaxos have uniform roles, we call them replicas
and not leaders or followers.) To our surprise, none of the
evaluations in EPaxos, its derivatives, and similar work pro-
vides measurements of resource usage (CPU, memory, net-
work bandwidth) during the experiments.

Having information about the protocol’s resource con-
sumption can help determine the added cost of avoiding the
bottleneck and rate its suitability for a resource-packed cloud
setting. For example, unlike EPaxos, Multi-Paxos consumes
a lot less CPU, as Figure 2 (c) shows. More specifically, Multi-
Paxos fully utilizes only the leader node, while each follower
uses only about a quarter of its node’s CPU, effectively leav-
ing 0.75 ∗ 4 = 3 nodes worth of CPU unused in the cluster.
While not ideal for the protocol’s own load balancing, these
unused resources also mean that Multi-Paxos can achieve
roughly 80% of EPaxos’ throughput using just 40% of CPU.
To understand the efficiency of replication protocols, we

propose a new performance metric: throughput-per-unit-of-
constraining-resource-utilization. We can apply the metric to
any cluster resource used by the protocol, such as combined
memory or CPU usage across all nodes. However, the most
useful resource to study is the limiting or constraining re-
source that causes a bottleneck on one or more machines.
In the context of replicating small payloads (Figure 2), such

limiting resource is likely to be CPU, as we see that both pro-
tocols reach nearly 100% utilization on at least one node. In
other settings and under different workloads the constrain-
ing resource may change.

A handful of cloud and database systems [20, 25] consider
using price/cost as a proxy for the system’s efficiency. The
cost metric normalizes the performance per dollar spent.
This, however, serves as an indirect measure of the true re-
source efficiency of protocols, as cost per unit of resource
may vary between vendors and over time. Moreover, the cost
measure often encompasses the price of multiple resources
bundled together, hiding the impacts a single resource may
have on limiting the scalability of the protocol. For instance,
if a cost metric incorporates multiple distinct resources, such
as RAM, storage IOPS, and CPU, it becomes unclear which
of these bundled resources is a constraining one and must be
optimized to improve performance at the fixed cost. Further-
more, for some systems or deployments, the cost estimates
are based on the allocated resources, and not resources ac-
tually consumed, which again favors protocols that can use
all allocated resources and not more efficient ones. For these
reasons, we chose to focus on a per-resource efficiency in-
stead of the cost measurement, especially considering that
the efficiency can be translated to cost in the cloud if the
resource rates are known. The resource efficiency metric can
also help to improve on-premise deployments, as estimat-
ing the monetary cost in these environments may be more
difficult.
We now revisit the efficiency of EPaxos and Multi-

Paxos protocols in light of the proposed metric. To this
end, we measure the CPU utilization percentage on each
node once every second and sum up these utilizations to
get an aggregate CPU utilization value in the cluster. We
then align the rolling throughput measurements with this
aggregate value to arrive at the CPU-normalized perfor-
mance expressed as throughput-per-unit-of-aggregate-CPU-
utilization (ops/s/CPU%). As Figure 2 (d) shows, this new ef-
ficiency metric paints a drastically different picture than the

Scalable but Wasteful: Current State of
Replication in the Cloud HotStorage’21, July 27-28, 2021, virtual conference

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(k

o
p

s/
s)

Time (s)

(a)

Multi-Paxos inst1
Multi-Paxos inst2
Multi-Paxos inst3
Multi-Paxos inst4
Multi-Paxos inst5

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60
C

P
U

 U
ti

li
za

ti
o

n
 (

%
)

Time (s)

(b)

node1
node2
node3
node4
node5

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(k

o
p

s/
s)

Time (s)

(c)

EPaxos inst1
EPaxos inst2
EPaxos inst3
EPaxos inst4
EPaxos inst5

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 10 20 30 40 50 60

A
g

g
re

g
at

e
T

h
ro

u
g

h
p

u
t

(k
o

p
s/

s)

Time (s)

(d)

Multi-Paxos
EPaxos

Figure 3: (a) Throughput of five Multi-Paxos instances on five AWS EC2m5a.2xlarge VMs. Each instance is spread
over all VMs, as shown in Figure 1. (b) CPU utilization of each VM when running five Multi-Paxos instances. (c)
Throughput of five EPaxos instances running on five AWS EC2 m5a.2xlarge VMs. (d) Aggregated throughput of
five Multi-Paxos instances and five EPaxos instances running on five m5a.2xlarge VMs.

raw performance numbers shown in Figure 2 (a). The latter
shows EPaxos having higher throughput than Multi-Paxos
in a dedicated cluster, essentially illustrating that EPaxos
is more efficient given the resources allocated. The same ex-
perimental run expressed with our new efficiency metric
in Figure 2 (d) shows that Multi-Paxos is nearly twice as
efficient than EPaxos when considering the resources con-
sumed. This confirms our intuition that the extra processing
requirements of EPaxos, as it needs to check each operation
against the dependency graph for possible conflicts, drasti-
cally impact its efficiency. Multi-Paxos, on the other hand, is
a less complicated protocol that requires only a few simple
comparisons to determine the validity of each operation.

While we focused on just two protocols and one resource,
the metric applies to any replication protocol and a variety
of resources. For instance, some implementations of primary
backup [2] may be more CPU-efficient at the leader than
the consensus protocols due to slightly different messag-
ing requirements. Similarly, having a disk-bound state ma-
chine instead of a memory-bound one may put more strain
on the storage subsystem. The efficiency metric can also
be useful for other data-driven protocols and systems that
have replication at their core, such as distributed queues or
logs [3], pub-sub systems [15], and transaction processing
protocols [30, 37].

5 INEFFECTIVENESS OF CURRENT
APPROACHES PER NEWMETRIC

Dedicated server or VM deployments of state machine repli-
cation waste allocated but unused resources, making better-
balanced protocols like EPaxos or PigPaxos more desirable.
Many cloud-native systems, however, rely on shared environ-
ments for better utilization of available resources. More im-
portantly, these shared environments are often constrained
by a budget, making efficiency paramount to extracting as

much work from a fixed pool of resources. In this section,
we demonstrate how more efficient protocols, such as Multi-
Paxos, achieve higher aggregated throughput despite having
worse protocol-level load balancing characteristics.

In a modern data center, large storage systems scale hori-
zontally in a data-parallel manner by providing strong con-
sistency in different data partitions using independent in-
stances of replicated state machines. This allows a more com-
prehensive resource balancing that is not confined within
the bounds of a single replicated state machine instance.
For example, resources left unused by one instance can be
picked up by another one, given proper resource allocation
and scheduling strategies. Luckily, modern containerized
infrastructure facilitates such resource scheduling [5, 12, 34].

As a concrete example, let’s consider a task-packing setup
on a five-node cluster for simplicity. This cluster of machines
may represent a fixed budget that wemay be willing to spend
on replication and storage infrastructure. In this setup, we
can “task-pack” five Multi-Paxos instances such that in a
fault-free case each node hosts one Multi-Paxos leader and
four followers each belonging to a different Multi-Paxos in-
stance (similar to Figure 1 but with fiveMulti-Paxos instances
instead of four). This simple deployment, despite relying on
a protocol with disproportionate resource usage between the
leader and the follower nodes, achieves good resource usage
by pairing resource-heavy roles with resource-light ones.

We demonstrate this by emulating such a “resource-shared
cloud” scenario on anAWSEC2 cluster using fivem5a.2xlarge
VMs with 8 vCPUs and 32GiB of RAM. We deploy five
instances of Multi-Paxos using the aforementioned task-
packing setup and measure the throughput of each Multi-
Paxos instance and CPU utilization across the VMs while
repeating the previous experiment (§ 3).We target each of the
five instances separately with up to 100 concurrent closed-
loop clients and aggregate the throughput data across all
protocol instances. Figure 3 (a) shows that each Multi-Paxos

HotStorage’21, July 27-28, 2021, virtual conference V. S. Matte et al.

instance achieves roughly 30 kops/s of throughput and Fig-
ure 3 (b) confirms that CPUs on all nodes are fully utilized.
(In this case, the throughput of a single Multi-Paxos instance
is higher than the throughput in Figure 2 (a) due to a more
powerful VM.)
For comparison, we also deploy five instances of EPaxos

on the same cluster and repeat the experiment. This simu-
lates two systems with the same number of shards running
on identical clusters for a fair comparison. In theory, due
to its ability to saturate the node’s resource, we could have
kept EPaxos as a single partition running on the cluster of
larger machines. However, in practice scaling systems to
work efficiently on high-core count machines is challeng-
ing, and rarely produces perfect speedup. Partitioned de-
ployments are better in this regard, as different partitions
running in separate processes have fewer contention points
over shared software resources, such as locks, queues, and
atomic counters. Figure 3 (c) shows that each instance of
EPaxos achieves only 15 kops/s of throughput with CPUs on
all nodes fully utilized (the graph omitted to save space). Per-
instance throughput of EPaxos in such sharded and packed
environment has dropped compared to our dedicated setup.
This is because each of the five EPaxos instances had 8

5 vC-
PUs available at each server (assuming the OS scheduling
was fair), which is slightly under 2 vCPUs available in the
dedicated experiment.
To summarize, Figure 3 (d) shows that the five instances

of Multi-Paxos boast almost twice the aggregate throughput
of that of five instances of EPaxos. Hence, compared to the
dedicated resource experiment (Figure 2), a more efficient
protocol has a significant advantage in a shared environment
with proper task-packing.

6 CONCLUSION AND FUTURE
DIRECTIONS

The emergence of cloud computing has dramatically tran-
sitioned how we build systems, but this transition is far
from over. Many storage systems rely on strongly consis-
tent replication protocols. These protocols, however, predate
the cloud by decades, and many proposed optimizations on
them continue to ignore the different reality put in front of
us by cloud computing. In this work, we make a case for
redesigning replication protocols for the cloud.
The key insight of our work is that while the optimiza-

tions proposed so far significantly improve the transaction
throughput, they ignore resource efficiency, which is crit-
ical in a pay-as-you-go utility model of cloud computing.
More specifically, these optimizations assume as a baseline
a Multi-Paxos instance running on a dedicated cluster with
identical nodes, where the leader node is the bottleneck and
the follower nodes are underutilized. They then invent a

more complex and less resource efficient protocol that spreads
the load to the underutilized follower nodes. We show that
when deployed in a typical cloud environment with a fixed
budget of resources, these “optimized protocols” significantly
underperform compared to “unoptimized protocols”.
This begs the question of designing the protocols and

systems that are more appropriate for resource-shared en-
vironments and specifically the cloud. To this end, we have
introduced a newmetric that takes into account resource effi-
ciency by normalizing the throughput over the resource con-
sumption. The metric serves as a good proxy for protocols’
relative performance in sharded, task-packed environments.
Using this metric, we can identify bottlenecks in replica-

tion protocols and optimize them for modern environments.
One potential source of optimizations is the emerging hard-
ware and software technologies. These technologies may
provide opportunities for further efficiency optimizations
or efficiency trade-offs when efficiency over one resource
improves at the expense of other, more abundant resources.
For instance, Odyssey [10] argues for designing replication
protocols with modern hardware in mind—taking into ac-
count the multi-core nature of servers and the availability
of new communication technologies that bypass CPU, such
as RDMA. Other modern implementation-driven methods,
such as kernel bypass (i.e. DPDK [14]), may be used to reduce
the CPU footprint of the protocols.
The optimizations don’t have to stop at using new im-

plementation technologies, and we can still do a lot to curb
resource usage at the protocol level. For example, some of
the older tricks, such as Cheap Paxos [18] may get handy
to limit unnecessary communication. Use-case-specific op-
timizations are possible as well. For instance, in a system
that frequently overwrites some small subset of data ob-
jects, a leader may forgo replicating an operation right away
in anticipation that some shadowing operation may arrive
shortly.

More radical or questionable ideas are worth exploring as
well. For example, using ever-improving time synchroniza-
tion [19] in the datacenters as an always-on implicit source
of communication and synchronization may result in the
protocol that avoids some of the explicit synchronizations
and spare some resources.

These and other potential solutions require an understand-
ing of the resource efficiency of protocols and systems. The
importance of scaling without sacrificing efficiency has been
brought up before in the context of big data platforms [21].
However, the efficiency problem is largely ignored in repli-
cation protocols and especially consensus-based replication.
We think studying the efficiency is even more important in
the context of protocols running on the cloud and we hope to
see the emergence of a new generation of resource-efficient
replication protocols designed for the cloud.

Scalable but Wasteful: Current State of
Replication in the Cloud HotStorage’21, July 27-28, 2021, virtual conference

REFERENCES
[1] Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. 2019. Dis-

secting the Performance of Strongly-Consistent Replication Protocols.
In Proceedings of the 2019 International Conference on Management of
Data (SIGMOD 2019). 1696–1710.

[2] Peter A. Alsberg and John D. Day. 1976. A Principle for Resilient
Sharing of Distributed Resources. In Proceedings of the 2nd International
Conference on Software Engineering (San Francisco, California, USA)
(ICSE ’76). IEEE Computer Society Press, Washington, DC, USA, 562–
570.

[3] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wob-
bler, Michael Wei, and John D. Davis. 2012. CORFU: A Shared Log
Design for Flash Clusters. In 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12). USENIX Association, San
Jose, CA, 1–14. https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/balakrishnan

[4] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P.
Kusters, and Peng Li. 2011. Paxos Replicated State Machines as the Ba-
sis of a High-Performance Data Store. In 8th USENIX Symposium onNet-
worked Systems Design and Implementation (NSDI 11). USENIX Associ-
ation, Boston, MA. https://www.usenix.org/conference/nsdi11/paxos-
replicated-state-machines-basis-high-performance-data-store

[5] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and
John Wilkes. 2016. Borg, Omega, and Kubernetes: Lessons Learned
from Three Container-Management Systems over a Decade. Queue 14,
1 (Jan. 2016), 70–93. https://doi.org/10.1145/2898442.2898444

[6] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2019. Lin-
earizable quorum reads in Paxos. In 11th {USENIX} Workshop on Hot
Topics in Storage and File Systems (HotStorage 19).

[7] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2021. Pig-
Paxos: Devouring the Communication Bottlenecks in Distributed Con-
sensus. In Proceedings of the 2021 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 2021) (SIGMOD ’21). As-
sociation for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3448016.3452834

[8] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s
globally distributed database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 8.

[9] Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman,
Matthieu Perrin, and Pierre Sutra. 2020. State-machine replication for
planet-scale systems. In Proceedings of the Fifteenth European Confer-
ence on Computer Systems. 1–15.

[10] Vasilis Gavrielatos, Antonios Katsarakis, and Vijay Nagarajan. 2021.
Odyssey: The Impact of Modern Hardware on Strongly-Consistent
Replication Protocols. In Proceedings of the Sixteenth European Confer-
ence on Computer Systems (Online Event, United Kingdom) (EuroSys
’21). Association for Computing Machinery, New York, NY, USA, 245–
260. https://doi.org/10.1145/3447786.3456240

[11] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. 2014. Multi-Resource Packing for Cluster
Schedulers. SIGCOMM Comput. Commun. Rev. 44, 4 (Aug. 2014), 455–
466. https://doi.org/10.1145/2740070.2626334

[12] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica.
2011. Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center. In 8th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 11). USENIX Association, Boston,
MA. https://www.usenix.org/conference/nsdi11/mesos-platform-fine-
grained-resource-sharing-data-center

[13] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. 2010. ZooKeeper: wait-free coordination for internet-scale sys-
tems. In Proceedings of the 2010 USENIX annual technical conference
(ATC 2010) (Boston, MA). USENIX Association, 11–11.

[14] Intel. 2014. DPDK: Data Plane Development Kit. https://www.dpdk.
org/.

[15] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed
messaging system for log processing. In Proceedings of the NetDB,
Vol. 11. 1–7.

[16] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 133–169. https://doi.org/10.1145/279227.279229

[17] Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19 (Oc-
tober 2006), 79–103. https://www.microsoft.com/en-us/research/
publication/fast-paxos/

[18] L. Lamport and M. Massa. 2004. Cheap Paxos. In International Con-
ference on Dependable Systems and Networks, 2004. 307–314. https:
//doi.org/10.1109/DSN.2004.1311900

[19] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan Wassel, Peter
Hochschild, Dave Platt, Simon Sabato, Minlan Yu, Nandita Dukkipati,
Prashant Chandra, and Amin Vahdat. 2020. Sundial: Fault-tolerant
Clock Synchronization for Datacenters. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 1171–1186. https://www.usenix.org/conference/osdi20/
presentation/li-yuliang

[20] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Sub-
rata Mitra, Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 2020.
OPTIMUSCLOUD: Heterogeneous Configuration Optimization for
Distributed Databases in the Cloud. In 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20). USENIX Association, 189–203.
https://www.usenix.org/conference/atc20/presentation/mahgoub

[21] Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scala-
bility! But at what COST?. In 15th Workshop on Hot Topics in Oper-
ating Systems (HotOS XV). USENIX Association, Kartause Ittingen,
Switzerland. https://www.usenix.org/conference/hotos15/workshop-
program/presentation/mcsherry

[22] Microsoft. 2021. Global data distribution with Azure Cosmos DB -
under the hood. https://azure.microsoft.com/en-us/services/cosmos-
db/.

[23] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2013. There
is more consensus in egalitarian parliaments. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
358–372.

[24] Diego Ongaro and John Ousterhout. 2014. In search of an under-
standable consensus algorithm. In 2014 {USENIX} Annual Technical
Conference ({USENIX} ATC 14). 305–319.

[25] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 193–206. https://www.
usenix.org/conference/nsdi19/presentation/pu

[26] William Schultz, Tess Avitabile, and Alyson Cabral. 2019. Tunable
Consistency in MongoDB. Proc. VLDB Endow. 12, 12 (Aug. 2019),
2071–2081. https://doi.org/10.14778/3352063.3352125

[27] Dharma Shukla, Shireesh Thota, Karthik Raman, Madhan Gajendran,
Ankur Shah, Sergii Ziuzin, Krishnan Sundaram, Miguel Gonzalez
Guajardo, Anna Wawrzyniak, Samer Boshra, Renato Ferreira, Mo-
hamed Nassar, Michael Koltachev, Ji Huang, Sudipta Sengupta, Justin
Levandoski, and David Lomet. 2015. Schema-Agnostic Indexing with
Azure DocumentDB. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1668–1679.
https://doi.org/10.14778/2824032.2824065

[28] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jor-
dan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin,

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/balakrishnan
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/balakrishnan
https://www.usenix.org/conference/nsdi11/paxos-replicated-state-machines-basis-high-performance-data-store
https://www.usenix.org/conference/nsdi11/paxos-replicated-state-machines-basis-high-performance-data-store
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/3448016.3452834
https://doi.org/10.1145/3448016.3452834
https://doi.org/10.1145/3447786.3456240
https://doi.org/10.1145/2740070.2626334
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://www.dpdk.org/
https://www.dpdk.org/
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/fast-paxos/
https://www.microsoft.com/en-us/research/publication/fast-paxos/
https://doi.org/10.1109/DSN.2004.1311900
https://doi.org/10.1109/DSN.2004.1311900
https://www.usenix.org/conference/osdi20/presentation/li-yuliang
https://www.usenix.org/conference/osdi20/presentation/li-yuliang
https://www.usenix.org/conference/atc20/presentation/mahgoub
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://doi.org/10.14778/3352063.3352125
https://doi.org/10.14778/2824032.2824065

HotStorage’21, July 27-28, 2021, virtual conference V. S. Matte et al.

Raphael Poss, Paul Bardea, Amruta Ranade, Ben Darnell, BramGruneir,
Justin Jaffray, Lucy Zhang, and Peter Mattis. 2020. CockroachDB:
The Resilient Geo-Distributed SQL Database. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data
(SIGMOD 2020) (Portland, OR, USA) (SIGMOD ’20). Association for
Computing Machinery, New York, NY, USA, 1493–1509. https:
//doi.org/10.1145/3318464.3386134

[29] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay
Chander, Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert
Karl. 2015. Holistic Configuration Management at Facebook. In Pro-
ceedings of the 25th Symposium on Operating Systems Principles (SOSP
2015). ACM, 328–343. https://doi.org/10.1145/2815400.2815401

[30] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transac-
tions for Partitioned Database Systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data (Scottsdale,
Arizona, USA) (SIGMOD ’12). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/2213836.2213838

[31] Sarah Tollman, Seo Jin Park, and John Ousterhout. 2021. EPaxos
Revisited. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). USENIX Association. https://www.
usenix.org/conference/nsdi21/presentation/tollman

[32] Robbert van Renesse and Deniz Altinbuken. 2015. Paxos Made Mod-
erately Complex. ACM Comput. Surv. 47, 3, Article 42 (Feb. 2015),
36 pages. https://doi.org/10.1145/2673577

[33] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmade-
sam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Mau-
rice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora:

Design considerations for high throughput cloud-native relational
databases. In Proceedings of the 2017 ACM International Conference on
Management of Data. ACM, 1041–1052.

[34] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster manage-
ment at Google with Borg. In Proceedings of the European Conference
on Computer Systems (EuroSys). Bordeaux, France.

[35] MichaelWhittaker, Ailidani Ailijiang, Aleksey Charapko,Murat Demir-
bas, Neil Giridharan, Joseph M. Hellerstein, Heidi Howard, Ion Stoica,
and Adriana Szekeres. 2021. Scaling Replicated State Machines with
Compartmentalization [Technical Report]. arXiv:cs.DC/2012.15762

[36] Yugabyte, Inc. 2021. YugabyteDB. https://www.yugabyte.com/.
[37] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishna-

murthy, and Dan R. K. Ports. 2018. Building Consistent Transactions
with Inconsistent Replication. ACM Trans. Comput. Syst. 35, 4, Article
12 (Dec. 2018), 37 pages. https://doi.org/10.1145/3269981

[38] Hanyu Zhao, Quanlu Zhang, Zhi Yang, Ming Wu, and Yafei Dai. 2018.
SDPaxos: Building Efficient Semi-Decentralized Geo-Replicated State
Machines. In Proceedings of the ACM Symposium on Cloud Computing
(Carlsbad, CA, USA) (SoCC ’18). Association for Computing Machinery,
New York, NY, USA, 68–81. https://doi.org/10.1145/3267809.3267837

[39] Jianjun Zheng, Qian Lin, Jiatao Xu, Cheng Wei, Chuwei Zeng, Pingan
Yang, and Yunfan Zhang. 2017. PaxosStore: high-availability storage
made practical in WeChat. Proceedings of the VLDB Endowment 10, 12
(2017), 1730–1741.

https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.1145/2213836.2213838
https://www.usenix.org/conference/nsdi21/presentation/tollman
https://www.usenix.org/conference/nsdi21/presentation/tollman
https://doi.org/10.1145/2673577
http://arxiv.org/abs/cs.DC/2012.15762
https://www.yugabyte.com/
https://doi.org/10.1145/3269981
https://doi.org/10.1145/3267809.3267837

	Abstract
	1 Introduction
	2 Repliction in the Wild
	3 Current Approaches to Scaling State Machine Replication
	4 Efficiency Metric
	5 Ineffectiveness of Current Approaches per New Metric
	6 Conclusion and Future Directions
	References

